BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 46, 1399—1407 (1973)

Molecular Vibrations and Force Fields of Alkyl Sulfides. VI. Methyl Ethyl Sulfide and Its Deuterated Compounds, and Diethyl Sulfide

Masaru Ohsaku, Yuji Shiro,* and Hiromu Murata

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Hiroshima *Shinonome Branch School, Faculty of Education, Hiroshima University, Shinonome-3-chome, Hiroshima (Received October 17, 1972)

Deuterated methyl ethyl sulfides, CD₃SCH₂CH₃ and CH₃SCD₂CD₃, were prepared, and their infrared spectra were recorded in the gaseous, liquid, and solid states. The normal coordinates of methyl ethyl sulfide, its deuterated analogues, and diethyl sulfide have been treated by the use of a modified Urey-Bradley potential field. The conformational analyses of these sulfides were made by the aid of the calculations. In the gaseous and liquid states, two forms (T and G) have been confirmed to exist for CH₃SCH₂CH₃, and three forms (TT, TG, and GG), for CH₃CH₂SCH₂CH₃. In the solid state, CH₃SCH₂CH₃ or CH₃CH₂SCH₂CH₃ exists in one form: T or TT. The observed infrared frequencies were compared with the calculated frequencies and were fully assigned.

In our previous papers, we reported the infrared spectra of methyl ethyl sulfide¹⁾ and diethyl sulfide;²⁾ we postulated two and three conformations for methyl ethyl and diethyl sulfides respectively. However, we could not assign all of the infrared bands observed in the CH₃ rocking, CH₂ deformation, and C–S stretching regions. The purpose of this paper is to make the full assignments of the infrared bands of these sulfides, and to determine the skeletal conformations of methyl ethyl and diethyl sulfides. In order to confirm the vibrational assignments, the normal coordinates have been treated for these molecules. The vibrational analysis has also been extended to deuterated methyl ethyl sulfides: CD₃SCH₂CH₃ and CH₃SCD₂CD₃.

Vibrational Assignment

Deuterated methyl ethyl sulfides were prepared from CD₃I and CH₃CH₂SH, and from CD₃CD₂Br and CH₃SNa. The method of infrared recording and the instrument used have been described previously. Doth samples are contaminated with a very small amount of the normal species. The obtained infrared data are summarized in Tables 1 and 2. The spectra of CD₃-SCH₂CH₃ are more complicated than those of the normal species. The spectra of CH₃SCD₂CD₃ are the most complicated of the three. The observed bands

of annealed films are well resolved in both deuterated species. The assignments of the observed bands were made on the basis of the band intensities, band envelopes, and normal coordinates.

Methyl Ethyl Sulfide-d₃. The bands of the methyl group which is bonded to the sulfur atom are shifted directly upon deuteration. The two CD₃ degenerate deformation bands are expected around 1050 cm⁻¹. In this frequency region, we observed fairly complex band peaks. The bands at 1045 and 1040 cm⁻¹ in the liquid state are assigned to the CH₃ rocking and the CD₃ degenerate deformation vibrations with reference to the band intensities. The CD₃ symmetrical deformation band is expected around 950 cm $^{-1}$, while the two CD_3 rocking vibrations are expected around 750 cm⁻¹. We observed some bands in the expected regions and assigned these bands as is shown in Table 1, although the assignments are not straightforward. Below 1400 cm⁻¹, in particular below 800 cm⁻¹, over half of the bands disappear in the solid state. Most of the disappearing bands may be related to the rotational iso-

Methyl Ethyl Sulfide-d₅. The ethyl-group vibrations are shifted to a lower frequency region upon deuteration. The other bands except for the C–C stretching band are not so much affected upon deuteration. For this species, the bands observed below 1100 cm⁻¹ are very complex. According to the result of the normal-coordinate calculation, each of the normal coordinates can be said to be fairly well coupled with one another—in particular in the CD₃ and CD₂ deforma-

¹⁾ M. Ohsaku, Y. Shiro, and H. Murata, This Bulletin, 45, 954 (1972).

²⁾ M. Ohsaku, Y. Shiro, and H. Murata, ibid., 45, 956 (1972).

Table 1. Infrared frequencies (cm^{-1}) AND ASSIGNMENTS OF CD₃SCH₂CH₃^a)

AN	ASSIGNMENTS OF		· · · · · · · · · · · · · · · · · · ·	Room temp.	Room tem	p. Anneale
Gaseous Room temp.	Liquid Room temp.	Solid Annealed	Assignment ^{b)}	726 vvw	724 w	731 m
/2994				718 vvw	720 sh, vw	721 w
2985 vvs	2972 vs	2972 s	$ u_{\mathrm{C-H}}$	705 vvw	698 vw	
\2975				685 vvvw	689 sh, vw	
2967 sh, s	2965 sh, s	2959 s 2951 sh, m	ν _{C—H}	(653 w (646 w	645 sh, w	
(2947 (2942 vvs 2934	2929 vs	2930 m	$ u_{\mathrm{C-H}}$	641 635 w 632	640 m	$\begin{pmatrix} 640 \text{ s} \\ 634 \text{ w} \end{pmatrix}$
(2925 sh, s (2916 sh, m	2916 sh, s	2918 m	$ u_{\mathrm{C-H}}$	523 vvw	520 vw 360 vvw	_
2895 s		2904 w			345 vw	240
2883 s		2885 vvw			264 vvw	348 w
2880 s	28 7 5 s	2873 m	$ u_{\mathrm{C-H}}$		244 vvw	
2855 m	2855 m	2843 w	-с-н			
2844 m	2833 m	2823 vvw			, medium; w, we	
/2259	2000 111	2023 VVW		•	3000, 2800—2300), and 2000—15
$\begin{pmatrix} 2253 \\ 2253 \\ 2240 \end{pmatrix}$	2235 s	2235 m	$ u_{\mathrm{C-D}}$	b) ν, stretcl	omitted. hing; $\delta^{ ext{d}}$, degener	
\	2155 sh, vw	-	Patrane		netrical deformat $ ext{sing}$; $\delta_{ ext{skel}}$, skel	
$\binom{2147}{2140}$ s	2131 vs	2129 m	$ u_{\mathrm{C-D}}$	torsions)		ctar deformati
\2133			0 2	TABLE S	2. Infrared f	REQUENCIES (C
2092 w	2090 w	2089 vvw			ASSIGNMENTS OF	
2083 sh, w	2070 w	2074 vvw				
2020 vw 2010 vw	2004 w	— 2004 vvw	_	Gaseous Room temp.	Liquid Room temp.	Solid Annealed
1464 s	1460 sh, s	(1462 s 1455 s	$\delta^{ ext{d}}{}_{ ext{CH}_3}$	$\binom{3005 \text{ s}}{2998 \text{ s}}$	2985 s	2987 w
1452 s	1452 vs	1447 m	${\delta^{ m d}}_{ m CH_3}$	/2988		
1443 sh, m	1440 sh, s		$\delta^{ m d}_{ m CH_3}, { m G}$	(2980 s	2973 s	2972 m
1427 w	1426 s	1432 s	$\delta^{b}_{ ext{CH}_{2}}$	\2976		0050 1
1420 sh, w /1390	1420 sh, m	_	$\delta^{\mathrm{b}}_{\mathrm{CH}_2}$, G	(2936 vs	2917 vs	2959 sh, vw 2917 s
1383 w 1377	1377 s	1377 s	$\delta^{ m s}{}_{ m CH_3}$	\2924 vs 2880 w		2873 vw
•	1365 sh, w		${\delta^{\mathrm{s}}}_{\mathrm{CH_{3}}},\mathrm{G}$	(2872 w	2862 m	2864 w
1325 vvw /1279	1320 vvw	_	—	\2860 w 2845 w	2838 s	2840 m
1271 vs 1265	1278 sh, s	1283 s	$\delta^{\rm w}{}_{\rm CH_2}$	/2240 (2233 vs	2228 vs	2232 s
•	/1266 vs	/1269 s	$\delta^{\mathrm{t}}_{\mathrm{CH}_{2}}$,	\2226		0000
	(1248 sh, m	(1255 s	$\delta^{\mathrm{r}}_{\mathrm{CH_3}}$	0005	0005 1	2222 m
1064 m	1063 sh, m	·	$\delta^{\mathrm{r}}_{\mathrm{CH_3}}$, G	2205 vw	2205 sh, m	2209 vw
/1056	ŕ			2195 w	0174	2192 vw
(1053 m (1049	1056 sh, m	1056 w	$\delta^{ m r}{}_{ m CH_3}$	2164 w (2155 w	2174 m 2145 m	2174 vw 2148 w
1045 m	1049 s	1049 vs	$\delta^{ ext{d}}{}_{ ext{CD}_3}$	\2145 w		
1040 sh, w	1045 sh, m	1045 w	$\delta^{ m r}_{ m CH_3}, \ \delta^{ m t}_{ m CH_2}$	2130 w 2089 w	2118 s	2122 w 2095 vvw
1030 sh, w	1040 s	1035 vs	$\delta^{ m d}_{ m CD_3}$	2079 w	2071 s	2071 m
1008 vw	1013 m	1013 w	$ u_{\mathbf{C}-\mathbf{C}}$	2050 sh, w	2038 w	2038 vvw
(990 w (985 w	983 m		$\nu_{\mathrm{c-c}},\mathrm{G}$	/1454 s	1437 vs	2033 vvw 1439 vs
(977 (970 w	971 s	966 vs	$\delta^{ m s}_{ m CD_3}$	(1448 s (1440 s	1427 vs	1428 vs
\965			-	\1436 s		- 140 VS
/795	700 -	707	$\delta^{\mathrm{r}}_{\mathtt{CH}_{2}}$,	1425 sh, m	1420 sh, s	
(788 w (784	789 s	797 s	$\delta^{\mathrm{r}}_{\mathrm{CH}_3}$	(1333 1325 w	1320 m	(1327 vw (1320 m
(777 W	761 w		$\delta^{ m r}{}_{ m CD_3}$	\1317	1005	, -
(765 sh, w				1000	1305 vw	
	750 sh, vw	-	$\delta^{\mathrm{r}}{}_{\mathrm{CD}_3}$, G	1220 vvw	1220 vw	

Gaseous Room temp.	Liquid Room temp.	Solid Annealed	Assignment ^{b)}
726 vvw	724 w	731 m	$\delta^{ m r}_{ m CD3}$
718 vvw	720 sh, vw	721 w	$\delta^{ m r}{}_{ m CD_3}$
705 vvw	698 vw		$\nu_{\mathrm{C-S}},\mathrm{G}$
685 vvvw	689 sh, vw		
(653 w (646 w	645 sh, w		$ u_{\mathrm{C-S}},\mathrm{G}$
641 635 w 632	640 m	$\begin{pmatrix} 640 \text{ s} \\ 634 \text{ w} \end{pmatrix}$	$ u_{\mathrm{C-S}}$
523 vvw	520 vw		
	360 vvw		$\delta_{ m skel}, { m G}$
	345 vw	348 w	$\delta_{ m skel}$
	264 vvw		$\delta_{ m skel},{ m G}$
	244 vvw		$\delta_{ m skel}$

- sh, shoulder. 1500 cm⁻¹ regi-
- on, δ^b , bending; ing; δ^t , twisting; ition (including

cm⁻¹) and)₃a)

	ASSIGNMENTS OF	-	,
Gaseous Room temp.	Liquid Room temp.	Solid Annealed	Assignment
(3005 s 2998 s	2985 s	2987 w	$ u_{\mathrm{C-H}}$
(2988 (2980 s (2976	2973 s	2972 m	$ u_{\mathrm{C-H}}$
•		2959 sh, vw	_
(2936 vs 2924 vs	2917 vs	2917 s	$ u_{\mathrm{C-H}}$
2880 w		2873 vw	-
(2872 w 2860 w	2862 m	2864 w	_
2845 w	2838 s	2840 m	
$\begin{pmatrix} 2240 \\ 2233 \text{ vs} \\ 2226 \end{pmatrix}$	2228 vs	2232 s	$ u_{\mathrm{C-D}}$
		2222 m	$ u_{\mathrm{C-D}}$
2205 vw	2205 sh, m	2209 vw	
2195 w		2192 vw	
2164 w	2174 m	2174 vw	
(2155 w 2145 w	2145 m	2148 w	$ u_{\mathrm{C-D}}$
2130 w	2118 s	2122 w	$ u_{\mathrm{C-D}}$
2089 w		2095 vvw	
2079 w	2071 s	2071 m	$ u_{\mathrm{C-D}}$
2050 sh, w	2038 w	2038 vvw	
		2033 vvw	
(1454 s 1448 s	1437 vs	1439 vs	$\delta^{ ext{d}}_{ ext{CH}_3}$
(1440 s 1436 s	1427 vs	1428 vs	$\delta^{ m d}_{ m \ CH_3}$
1425 sh, m	1420 sh, s		$\delta^{\rm d}{}_{{ m CH}_3}$, G
1325 w 1317	1320 m	(1327 vw (1320 m	$\delta^{\mathrm{s}}{}_{\mathrm{CH3}}$
	1305 vw		
1220 vvw	1220 vw	**********	

Gaseous Room temp.	Liquid Room temp.	Solid Annealed	Assignment
/1151			
1141 m	(1143 sh, m 1136 m	(1141 m 1136 s	$ u_{ ext{C-C}}, {\delta^{ ext{d}}}_{ ext{CD}_3}$
\1135	`	•	·
1070 s	1071 m	1068 vs	$\delta^d_{ ext{CD}_3}$
1063 s	1062 s	1055 vs	$\delta^{ m d}_{ m CD_3}$
1057 s 1052 s	1050 vs	1044 m	$\delta^{\mathrm{b}}_{\mathrm{CD}_{2}},\delta^{\mathrm{s}}_{\mathrm{CD}_{3}}$
1032 s /1038	1046 sh, s		$\delta^{\mathrm{b}}{}_{\mathrm{CD}_{2}}, \delta^{\mathrm{s}}{}_{\mathrm{CD}_{3}}, \mathrm{G}$
1031 s 1024	1025 vs	1025 vs	$\delta^{\mathrm{w}}{}_{\mathrm{CD}_{2}},\; \delta^{\mathrm{s}}{}_{\mathrm{CD}_{3}}$
	1013 vvw	1011 vvw	
(988 m 982 s	978 vs	982 vs	$\delta^{ m r}_{ m CH_3}$
\972 s	970 sh, w	975 w	2r
/965 sh, m	970 SII, W	373 W	$\delta^{ m r}{}_{ m CH_3}$
957 m	958 s	962 vs	$\delta^{ m s}{}_{ m CD_3}, \delta^{ m t}{}_{ m CD_2}$
\950 sh, w			0
(893 (887 w	887 w	893 w	2r
\883	007 W	693 W	$\delta^{\mathrm{r}}{}_{\mathrm{CD_3}}$, $ u_{\mathrm{C-C}}$
•	885 vw		$\delta^{\mathrm{r}}{}_{\mathrm{CD}_{3}}$, $\nu_{\mathrm{C-C}}$, G
		795 vvw	
785 sh, vw	786 w	786 w	$\delta^{\mathrm{r}}_{\mathrm{CD_{3}}}$, $\delta^{\mathrm{t}}_{\mathrm{CD_{2}}}$, $\delta^{\mathrm{w}}_{\mathrm{CD_{2}}}$
(777 w (772 w	770 m	767 m	$\delta^{\mathrm{t}}{}_{\mathrm{CD}_{2}}$, $\delta^{\mathrm{r}}{}_{\mathrm{CD}_{3}}$
(765 sh, vw 755 sh, vw	756 w	_	$\delta^{\mathrm{r}}{}_{\mathrm{CD_{3}}}$, $\delta^{\mathrm{r}}{}_{\mathrm{CD_{2}}}$, G
725 vw	725 w		$ u_{\mathrm{C-S}},\mathrm{G}$
(718 vw 712 vw	716 w	717 s	$ u_{\mathrm{C-S}}$
610 vw	610 w	612 m	$ u_{\mathrm{C-S}}$
(577 w (566 w	576 w		$\delta^{\mathrm{r}}{}_{\mathrm{CD}_{2}}$, $\delta^{\mathrm{r}}{}_{\mathrm{CD}_{3}}$, G
(558 w (555 w	565 m	569 s	$\delta^{\mathrm{r}}{}_{\mathrm{CD}_{2}}$, $\delta^{\mathrm{r}}{}_{\mathrm{CD}_{3}}$
		534 vvw	
	525 vvw	52 7 vvw	
	512 vvw	512 vvw	
	332 sh, vvw		$\delta_{ m skel}$, G
	321 vw	320 w	$\delta_{ m skel}$
	235 vvw 218 vvw	_	$\delta_{ m skel},{ m G}$
	210 VVW		$\delta_{ m skel}$

a) Above 3010, 2800-2300, and 2000-1500 cm⁻¹ regions are omitted.

The other description are the same to Table 1.

tion regions. However, the bands arising from CH₃ and CD₂CD₃ groups are fairly well separated.

Normal Coordinate Treatment

We made the normal coordinate treatment for four species: CH₃SCH₂CH₃, CD₃SCH₂CH₃, CH₃SCD₂CD₃, and $CH_3CH_2SCH_2CH_3$. The molecular parameters used in the computations were: r(C-H) or r(C-D)= $r(C-S)=1.81 \text{ Å}, \quad r(C-C)=1.54 \text{ Å},$ $\phi(CSC) = 99^{\circ}$; the other bond angles were assumed to be tetrahedral. The force field used was the Urey-Bradley type potential modified by some interactions. The correction terms were: p, p', p'', n, n', t, g, t', g', t'', g'', and l. The corrections of p, p', n, t, and g

have been explained in the first paper of this series.3) The additional corrections were the bond-interaction constant, p", between the C-S and C-C bonds; the angle interaction constant, n', between the CCH (or CCD) and HCH (or DCD) angles in the methyl group bonded to the carbon atom; the trans and gauche coupling constants, t' and g', between the CCH (or CCD) and SCC angles in the methyl group bonded to the carbon atom; the *trans* and *gauche* coupling constants, t'' and g'', between the methylene HCC (or DCC) and methyl CCH (or CCD) angles in the ethyl group, and the angle-interaction constant, l, between the SCH and HCC (or DCC) angles or the CCH (or

Table 3. Modified Urey-Bradley force constants^a)

OF METHYL ETHYL AND DIETHYL SULFIDES					
<i>K</i> (C-H)	4.250b)	CH ₃ and CH ₂ groups			
K(C-S)	1.750 ^{b)}	CH ₃ -S and S-CH ₂ bonds			
$K(\mathbf{C}-\mathbf{C})$	2.100°)	CH_2 - CH_3 bond			
H(HCS)	$0.030^{b,d}$	CH ₃ group			
H(HCH)	$0.370^{b,d}$	CH ₃ group			
H(CSC)	0.244 ^{b,d)}	CH ₃ –S–CH ₂ and CH ₂ – S–CH ₂ angles			
H(SCC)	0.070°	S-CH ₂ -CH ₃ angle			
H(CCH)	0.210^{c}	CH ₂ group			
H(SCH)	0.170^{d}	CH ₂ group			
H(HCH)	0.350^{d}	CH ₂ group			
H(CCH)	0.186°	CH ₃ group			
F(HCS)	$0.763^{b,d}$	• •			
F(HCH)	$0.200^{b,d}$				
F(CSC)	$0.210^{b,d}$				
F(SCC)	0.700°				
F(CCH)	0.470^{c}				
F(SCH)	0.390^{d}				
F(HCH)	0.200^{d}				
F(CCH)	0.540^{c}				
κ	$0.060^{b,d}$	CH₃ group			
	0.005^{d}	CH ₂ group			
Y	0.054^{b}	CH ₃ -S and S-CH ₂ bonds			
	0.100°	$\mathrm{CH_{2} ext{-}CH_{3}}$ bond			
þ	$-0.115^{b,d}$	CH ₃ and CH ₂ groups			
p'	-0.100	CH ₃ -S and S-CH ₂ bonds			
p''	-0.100	S-CH ₂ and CH ₂ -CH ₃ bonds			
n	0.033 ^b ,d)	CH_3 group (\angle HCS and \angle HCH)			
n'	0.040	CH_3 group ($\angle CCH$ and $\angle HCH$)			
t	0.070 ^b ,d)	CH ₃ group (∠HCS and ∠CSC, trans)			
g	$-0.050^{\text{b,d}}$	CH ₃ group (∠HCS and ∠CSC, gauche)			
t'	0.070	CH ₃ group (\angle CCH and \angle SCC, trans)			
g'	-0.050	CH ₃ group			
t''	0.070	$(\angle CCH \text{ and } \angle SCC, gauche)$ $CH_3CH_2 \text{ group}$			
g''	-0.050	(∠HCC and ∠CCH, trans) CH ₃ CH ₂ group (∠HCC and ∠CCH, gauche)			
l	0.000	S-CH ₂ -C			
	C TE TE TO	1 . // · · · 1 / / Y * * 7			

a) Unit of K, H, F, p, p', and p'' is in mdyn/Å; κ , Y, n, n', t, g, t', g', t'', g'', and l is in mdyn·Å; F' = -0.1 F. b) From Ref. 3. c) From Ref. 4. d) From Ref. 5.

Table 4. Observed and calculated frequencies (cm^{-1}) , and approximate potential energy DISTRIBUTION, PED. (%) OF CH-SCH-CH.

Table 5. Observed and calculated frequencies (cm^{-1}) , and approximate potential energy DISTRIBUTION, PED. (%) OF CD-SCH-CH-

DI			OF CH ₃ SCH ₂ CH ₃	DIS	TRIBUTION,	PED, (%)	OF CD ₃ SCH ₂ CH ₃
OI 18)	Ca	ılcd	DED	Ol18)	Ca	lcd	DED
Obsd ^{a)}	$\widetilde{\mathbf{T}}$	$\widetilde{\mathbf{G}}$	PED	Obsd ^{a)}	$\widetilde{\mathbf{T}}$	$\widetilde{\mathbf{G}}$	PED
2985 _s	2988	2988	$\nu_{\rm C-H}(100)$	2972 _s	2977	2977	$\nu_{\rm C-H}(100)$
2965_{s}°	2987	2987	$\nu_{\rm C-H}(100)$	$2959_{\rm s}$	2969	2969	$\nu_{\mathrm{C-H}}(100)$
2957 _s	2977	2977	$\nu_{\mathrm{C-H}}(100)$	$2930_{\rm s}$	2963	2963	$\nu_{\mathrm{C-H}}(100)$
2950 _s	2969	2969	$\nu_{\mathrm{C-H}}(100)$	2918 _s	2913	2913	$\nu_{\mathrm{C-H}}(100)$
2926 _s	2963	2963	$\nu_{\mathrm{C-H}}(100)$	2873 _s	2878	2878	$\nu_{\mathrm{C-H}}(100)$
2915 _s	2913	2913	$\nu_{\mathrm{C-H}}(100)$	2235 _s	2211	2211	$\nu_{\mathrm{C-D}}(100)$
$2874_{\rm s}$	2899	2899	$\nu_{\mathrm{C-H}}(100)$	$2235_{\rm s}$	2209	2209	$\nu_{\mathrm{C-D}}(100)$
2866 _s	2878	2878	$\nu_{\rm C-H}(100)$	$2129_{\rm s}$	2071	2071	$\nu_{\mathrm{C-D}}(100)$
$2855_{\rm s}$	20,0	20.0		1460 ₁	1449	1449	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$
2834 _s				1452,	1446		$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$
1465 ₁	1449	1449	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$	(1440_1)		1446	$\delta^{\rm d}_{ m CH_3}(100)$
1457 ₁	1448	1448	$\delta^{\rm d}_{\rm CH_3}(100)$	1426,	1427	1110	$\delta^{\mathrm{b}}_{\mathrm{CH_2}}(90)$
1437_1 1448_1	1447	1474	$\delta^{\rm d}_{\rm CH_3}(100)$	(1420_1)	112,	1427	$\delta^{b}_{CH_{2}}(90)$
1436 ₁	1446	1446	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$	1377,	1373	1127	$\delta^{\rm s}_{ m CH_3}(100)$
1430_1 1427_1	1427	1110	² _p (δ0)	(1365_1)	1373	1373	$\delta^{\rm s}_{ m CH_3}(100)$
(1420_1)	1427	1427	$\delta^{b}_{CH_{2}}(90)$	1278_{1}	1276	1274	δ _{CH3} (100) δw (05)
		1447	$\delta^{\mathrm{b}}_{\mathrm{CH}_{2}}(90)$	/1266 ₁	1270		$\delta^{w}_{CH_{2}}(95)$
1405 _s	1070	1979	25 (100)	$\begin{pmatrix} 1200_1 \\ 1248_1 \end{pmatrix}$	1259	1260	T: $\delta^{t}_{CH_{2}}(65)$, $\delta^{r}_{CH_{3}}(25)$, G: $\delta^{t}_{CH_{2}}(60)$, $\delta^{r}_{CH_{3}}(25)$
1374 ₁	1373	1373	$\delta^{s}_{CH_{3}}(100)$	(1063_1)		1073	$\delta^{r}_{CH_{3}}(85)$
1319,	1320	1320	$\delta^{\mathrm{s}}_{\mathrm{CH_3}}(100)$	1056	1075	1075	$\delta^{\rm r}_{\rm CH_3}(80)$
1305,		1074		1049 ₁	1073	1058	$\delta^{\rm d}_{ m CD_3}(100)$
(1278_1)	1076	1274	$\delta^{\text{w}}_{\text{CH}_2}(95)$	1045 ₁	1046	1049	$T: \delta^{r}_{CH_{3}}(50), \delta^{t}_{CH_{2}}(55),$
1264,	1276		$\delta^{\text{w}}_{\text{CH}_2}(95)$	10431	1010	1013	G: $\delta^{r}_{CH_{3}}(45)$, $\delta^{t}_{CH_{2}}(50)$
1249,	1260	1000	$\delta^{t}_{CH_{2}}(65), \delta^{r}_{CH_{3}}(25)$	1040_{1}	1055	1055	8d (100)
(1246_1)		1260	$\delta^{t}_{CH_{2}}(60), \delta^{r}_{CH_{3}}(25)$	1013,	995	1033	$\delta^{\mathrm{d}}_{\mathrm{CD_3}}(100)$
(1140_g)					993	987	$\nu_{\rm C-C}(90)$
1115 ₁				(983 ₁) 971 ₁	975	907 975	$\nu_{\rm C-C}(100)$
1062,	1075	1072	$T: \delta^{r}_{CH_{3}}(80),$		975 764		$\delta^{s}_{CD_{3}}(100)$
-			$G: \delta^{r}_{CH_3}(85)$	789 ₁	704	776	T: $\delta^{r}_{CH_{2}}(75)$, $\delta^{r}_{CH_{3}}(30)$,
(1045_1)	1046	1050	$\delta^{t}_{CH_{3}}(50), \delta^{t}_{CH_{2}}(55)$				G: $\delta^{r}_{CH_{2}}(50)$, $\delta^{r}_{CD_{3}}(25)$,
10081	1001		— (60) Sr (25)	(761)	769		$\delta^{r}_{CH_3}(25)$
9951	1001	006	$\nu_{\rm C-C}(60), \delta^{\rm r}_{\rm CH_3}(35)$	(761_1)	762	754	$\delta^{r}_{CD_3}(90)$
(982_1)	070	996	$\delta^{r}_{CH_{3}}(50), \nu_{C-C}(45)$	(750_{i})	707	754 796	$\delta^{r}_{CD_{3}}(70), \delta^{r}_{CH_{2}}(20)$
968,	979	077	$\delta^{r}_{CH_{3}}(70), \nu_{C-C}(35)$	724_{1}	727	726	$T: \nu_{C-S}(100),$
(960_1)		977	$\nu_{\rm C-C}(55), \delta^{\rm r}_{\rm CH_3}(50)$	5 00	70.4		$G: \delta^{r}_{CD_3}(100)$
(955_1)	0.25	967	$\delta^{r}_{CH_{3}}(100)$	7201	724	710	$\delta^{r}_{CD_{3}}(100)$
948,	967		$\delta^{\mathrm{r}}_{\mathrm{CH_3}}(100)$	(698_1)		716	$\nu_{\rm C-S}(100)$
$813_{ m s}$				(645_1)	221	633	$\nu_{\rm C-8}(95)$
(783_1)		771	$\delta^{r}_{CH_{2}}(65), \delta^{r}_{CH_{3}}(30),$	640,	631	0.00	$\nu_{\rm C-S}(90)$
	700		$\nu_{\rm C-S}(20)$	(360_1)		358	$\delta^{\mathrm{b}}_{\mathrm{SCC}}(60), \delta^{\mathrm{b}}_{\mathrm{CSC}}(25)$
758 ₁	762	721	$\delta^{r}_{CH_{2}}(80), \delta^{r}_{CH_{3}}(35)$	3451	342		$\delta^{\mathrm{b}}_{\mathrm{SCC}}(65), \delta^{\mathrm{b}}_{\mathrm{CSC}}(20)$
726 ₁	742	731	$\nu_{\rm C-s}(100)$	(264_{1})		265	$\tau_{\rm C-C}(50), \delta^{\rm b}_{\rm CSC}(30)$
(676_1)	C11	643	$\nu_{\rm C-S}(100)$	244_{1}	241		$\tau_{\mathrm{C-C}}(95)$
6541	644		$\nu_{\mathrm{C-S}}(100)$		218		$\delta^{\mathrm{b}}_{\mathrm{CSC}}(75)$, $\delta^{\mathrm{b}}_{\mathrm{SCC}}(20)$
(528_1)						208	$\delta^{\rm b}_{\rm CSC}(40), au_{ m C-C}(45)$
(505_1)		0.07			128	125	T: $\tau_{C-S}(100)$,
(363_1)	2.40	367	$\delta^{\mathrm{b}}_{\mathrm{SCC}}(55), \delta^{\mathrm{b}}_{\mathrm{CSC}}(30)$				G: $\tau_{C-S}(95)$
354_{1}	348		$\delta^{\mathrm{b}}_{\mathrm{SCC}}(60), \delta^{\mathrm{b}}_{\mathrm{CSC}}(25)$		77	75	$ au_{\mathrm{C-S}}(95)$
(272_1)		272	$\delta^{\mathrm{b}}_{\mathrm{CSC}}(35), \tau_{\mathrm{C-C}}(35), \\ \delta^{\mathrm{b}}_{\mathrm{SCC}}(20)$	a) See a	of Table 4.		
238,	242		$\tau_{\mathrm{C-C}}(95)$				
220_{1}	236		$\delta^{\mathrm{b}}_{\mathrm{CSC}}(70), \delta^{\mathrm{b}}_{\mathrm{SCC}}(25)$				e group. Most of the
(215_1)	400	216	$\tau_{\rm C-C}(60), \delta_{\rm CSC}(20)$				ferred from or referred
(-101)	175	172	$\tau_{\rm C-S}(95)$	to those of	related n	nolecules _]	previously reported.3-5)
	1/3	1/4	C_S(33)			_	=

a) Figures in parentheses show the bands which disappear in the solid state.

79

 $\tau_{\mathrm{C-S}}(95)$

80

s, solid-, 1, liquid-, and g, gaseous-state bands.

the rred 3-5)

³⁾ Y. Shiro, M. Ohsaku, M. Hayashi, and H. Murata, This Bulletin 43, 609 (1970).

⁴⁾ M. Hayashi, Y. Shiro, and H. Murata, ibid., 39, 112 (1966).

⁵⁾ M. Ohsaku, Y. Shiro, and H. Murata, ibid., 45, 3035 (1972).

Table 6. Observed and calculated frequencies (cm $^{-1}$), and approximate potential energy distribution, PED, (%) of CH $_3$ SCD $_2$ CD $_3$

Obsd ^a)	Ca	Calcd		Obsd ^{a)}	Cal	cd	DED	
Obsa	T	$\widehat{\mathbf{G}}$	PED	Obsa-7	T	$\overline{\mathbf{G}}$	PED	
2987 _s	2988	2988	$\nu_{\rm C-H}(100)$	9581	945	945	$\delta^{s}_{CD_{3}}(60), \delta^{t}_{CD_{2}}(40)$	
$2972_{\rm s}$	2987	2987	$\nu_{\rm C-H}(100)$	887,	873		$\delta^{r}_{CD_{3}}(45), \nu_{C-C}(25)$	
$2917_{\rm s}$	2899	2899	$\nu_{\rm C-H}(100)$	(885_1)		872	$\delta^{r}_{CD_{3}}(45), \nu_{C-C}(30)$	
$2232_{\rm s}$	2205	2205	$\nu_{\mathrm{C-D}}(100)$	786 ₁	793	797	$T: \delta^{r}_{CD_{3}}(45), \ \delta^{w}_{CD_{2}}(30)$	
$2222_{\rm s}$	2201	2201	$\nu_{\mathrm{C-D}}(100)$				G: $\delta^{t}_{CD_{2}}(45)$, $\delta^{r}_{CD_{3}}(25)$,	
$2148_{\rm s}$	2195	2196	$\nu_{\rm C-D}(100)$				$ u_{\mathrm{C-S}}(20)$	
$2122_{\rm s}$	2110	2110	$\nu_{\mathrm{C-D}}(100)$	770 ₁	778		$\delta^{t}_{CD_{2}}(80), \delta^{r}_{CD_{3}}(25)$	
2071 _s	2058	2058	$\nu_{\mathrm{C-D}}(100)$	(756_1)		787	$\delta^{r}_{CD_{3}}(35), \delta^{r}_{CD_{2}}(55)$	
1437 ₁	1448	1448	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$	(725_1)		726	$\nu_{\rm C-S}(100)$	
14271	1447		$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$	716 ₁	739		$\nu_{\rm C-S}(100)$	
(1420_1)		1447	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$	610_{1}	599	598	$ u_{\mathrm{C-s}}(90) $	
1320_{1}	1320	1320	$\delta^{\rm s}_{ m CH_3}(100)$	(576_1)		569	$\delta^{r}_{CD_{2}}(70), \delta^{r}_{CD_{3}}(45)$	
$/1143_{1}$	1104	1096	$T: \nu_{C-C}(70), \ \delta^{d}_{CD_3}(40),$	565_{1}	566		$\delta^{r}_{CD_{2}}(70), \delta^{r}_{CD_{3}}(25)$	
(1136_{1}^{2})	1104	1096	$\delta^{\text{w}}_{\text{CD}_2}(25)$	(332_1)		335	$\delta^{b}_{SCC}(50), \delta^{b}_{CSC}(35)$	
			G: $\nu_{C-C}(70)$, $\delta^{d}_{CD_{3}}(50)$,	321_{1}	318		$\delta^{b}_{SCC}(50), \delta^{b}_{CSC}(35)$	
			$\delta^{\mathrm{w}}{}_{\mathrm{CD_2}}(20)$	(235_1)		240	$\delta^{\mathrm{b}}_{\mathrm{CSC}}(50)$, $\delta^{\mathrm{b}}_{\mathrm{SCC}}(30)$	
1071 ₁	1070	1070	$\delta^{\mathrm{d}}{}_{\mathrm{CD_3}}(85)$	218_{1}	223		$\delta^{b}_{CSC}(60), \delta^{b}_{SCC}(35)$	
1062_{1}	1069	1069	$\delta^{\mathrm{d}}_{\mathrm{CD_3}}(95)$		184		$\tau_{\rm C-C}(50), \tau_{\rm C-S}(50)$	
1050,	1059		$\delta^{b}_{CD_{2}}(55), \delta^{s}_{CD_{3}}(45)$			171	$\tau_{\mathrm{C-S}}(90)$	
(1046_1)		1057	$\delta^{\rm b}_{\rm CD_2}(65), \delta^{\rm s}_{\rm CD_3}(35)$		166	164	T: $\tau_{C-S}(50)$, $\tau_{C-C}(45)$	
10251	1031	1030	$\delta^{w}_{CD_{2}}(40), \ \delta^{s}_{CD_{3}}(50)$				$G: \tau_{C-C}(80)$	
$978_{_{1}}$	987	988	$\delta^{\mathrm{r}}_{\mathrm{CH_3}}(100)$		72	71	$T: \tau_{C-S}(100)$	
970_{1}	968	967	$\delta^{r}_{CH_{3}}(100)$				G: $\tau_{C-S}(95)$	

a) See a) of Table 4.

Table 7. Observed and calculated frequencies (cm⁻¹), and approximate potential energy distribution, PED, (%) of CH₃CH₂SCH₂CH₃

	POIEN		BUTION, FED, (7	%) of CH ₃ CH ₂ SCH ₂ CH ₃
Obsd ^{a)}		Calcd		PED
Obsu /	$\widehat{\mathrm{TT^{b)}}}$	TG	GG	TED
2978 _s	2977	2977	2977	$\nu_{\rm C-H}(100)$
$2978_{\rm s}$	(2976)	2977	2977	$\nu_{\mathrm{C-H}}(100)$
$2967_{\rm s}$	2969	2969	2969	$ u_{\mathrm{C-H}}(100) $
$2967_{\rm s}$	2969	2969	2969	$\nu_{\rm C-H}(100)$
$2943_{\rm s}$	(2963)	2963	2963	$\nu_{\mathrm{C-H}}(100)$
$2936_{\rm s}$	2963	2963	2963	$\nu_{\rm C-H}(100)$
$2924_{\rm s}$	2913	2914	2913	$\nu_{\rm C-H}(100)$
2904 _s	2913	2913	2913	$\nu_{\rm C-H}(100)$
$2873_{\rm s}^{\circ}$	2878	2878	2878	$\nu_{\rm C-H}(100)$
2862 _s				
2853_{s}^{2}	2878	2878	2878	$ u_{\mathrm{C-H}}(100)$
$2823_{\rm s}^{-}$				
1478,	1449	1449	1449	$\delta^{\mathrm{d}}{}_{\mathrm{CH}_{3}}(100)$
1459_{1}	1449	1449	1449	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$
1453,	1446	1446	1446	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$
1449	(1446)	1446	1446	$\delta^{\mathrm{d}}_{\mathrm{CH_3}}(100)$
1438,	1428	1427	1427	$\delta^{\mathrm{b}}_{\mathrm{CH}_2}(90)$
(1425_1)	1426	1426	1426	δ ^b _{CH2} (90)
1381,	1373	1373	1373	$\delta^{s}_{CH_3}(100)$
1373,	1373	1373	1373	$\delta^{s}_{CH_3}(100)$
(1294_{c})				
1282	1279	1276	1274	$TT: \delta^{w}_{CH_{2}}(90), TG: \delta^{w}_{CH_{2}}(95), GG: \delta^{w}_{CH_{2}}(95),$
(1272_1)		1274	1273	$\delta^{w}_{CH_{2}}(95)$
12581	1273			$\delta^{\mathbf{w}}_{\mathbf{CH}_2}(90)$
1248,*	(1258)	1261	1262	$TT: \delta^{t}_{CH_{2}}(65), \delta^{r}_{CH_{3}}(30), TG: \delta^{t}_{CH_{2}}(65), \delta^{r}_{CH_{3}}(25)$
•	, ,			GG: $\delta^{r}_{CH_{2}}(60)$, $\delta^{r}_{CH_{3}}(30)$
1236,	1261	1260	1259	$\delta^{t}_{CH_{2}}(65), \delta^{r}_{CH_{3}}(30)$

Table 7. Continued.

		TABI	LE 7. Continue	ed.
Obsd ^{a)}		Calcd		PED
Obsu /	$\widetilde{\mathbf{TT^{b}}}$	TG	GG	120
1074,	1079	1076	1074	TT: $\delta^{r}_{CH_{3}}(80)$, TG: $\delta^{r}_{CH_{3}}(80)$, GG: $\delta^{r}_{CH_{3}}(85)$
(1066_{c})	1069	1072	1071	$\delta^{r}_{\text{CH}_3}(85)$
1047,	1049	1051	1051	$\delta^{r}_{CH_{3}}(50), \delta^{t}_{CH_{2}}(55)$
(1035_{c})		1001	1047	$\delta^{r}_{CH_{3}}(50), \delta^{t}_{CH_{2}}(55)$
1028,*	(1042)	1045	1017	$\delta^{r}_{CH_3}(50), \delta^{t}_{CH_2}(55)$
1005	()	1010		
992	1004	995		$TT: \nu_{C-C}(90), TG: \nu_{C-C}(95)$
983,	984		987	$\nu_{\rm C-C}(100)$
(981,)			986	$\nu_{\mathbf{C}-\mathbf{C}}(100)$
(971_1)		985		$\nu_{\mathrm{C-C}}(100)$
(967_1)				
(958_{c})				_
`797 _e	768			$\delta^{r}_{CH_{2}}(80), \delta^{r}_{CH_{3}}(35)$
(792_1)			776	$\delta^{r}_{CH_{2}}(75), \delta^{r}_{CH_{3}}(35)$
(789_1)			765	$\delta^{r}_{CH_{2}}(80), \delta^{r}_{CH_{3}}(35)$
(782_1)		769		$\delta^{r}_{CH_{2}}(80), \delta^{r}_{CH_{3}}(35)$
(762_1)	(757)	765		TT: $\delta^{r}_{CH_{2}}(85)$, $\delta^{r}_{CH_{3}}(30)$, TG: $\delta^{r}_{CH_{2}}(80)$, $\delta^{r}_{CH_{3}}(35)$
(738_1)	(, , , ,			— — Ch ₂ (), - Ch ₃ (), Ch ₂ (), - Ch ₃ ()
(696_1)		667		$\nu_{\mathrm{C-S}}(100)$
688,	669			$\nu_{\mathrm{C-s}}(100)$
(656_1)	648		664	$\nu_{\mathrm{C-s}}(100)$
(638_1)		638	630	$\nu_{\mathrm{C-S}}(100)$
(515_1)				——————————————————————————————————————
(500_1)				
(475_1)				
(450_1)				_
(425_1)				
(390_1)			391	$\delta^{\mathrm{b}}_{\mathrm{CCS}}(50), \delta^{\mathrm{b}}_{\mathrm{CSC}}(35)$
(384_1)		381		$\delta^{\rm b}_{\rm CCS}(60), \delta^{\rm b}_{\rm CSC}(25)$
(376_1)				
345 ₁	360			$\delta^{\mathrm{b}}_{\mathbf{CCS}}(90)$
337,	321		335	$TT: \delta^{b}_{CCS}(40), \delta^{b}_{CSC}(30), GG: \delta^{b}_{CCS}(80)$
(306_1)		312		$\delta^{\mathrm{b}}_{\mathrm{ccs}}(80)$
(294_1)				
(260_1)		261		$ au_{ ext{C-C}}(70)$
(255_1)			255	$\tau_{\mathrm{C-C}}(55)$, $\delta^{\mathrm{b}}_{\mathrm{CCS}}(25)$
2451	239	241	241	$\tau_{\mathrm{C-C}}(95)$
•	(243)			$\tau_{\mathrm{c-c}}(95)$
	, ,	190	193	TG: $\delta^{b}_{CSC}(50)$, $\tau_{C-C}(25)$, GG: $\delta^{b}_{CSC}(40)$, $\tau_{C-C}(35)$
	175			$\delta^{\rm b}_{\rm CSC}(60), \delta^{\rm b}_{\rm CCS}(35)$
			101	$ au_{\mathrm{c}=\mathrm{s}}(95)$
	91	95		$\tau_{\mathrm{C-S}}(95)$
		75		$ au_{\mathrm{C-S}}^{\mathrm{C-S}}(90)$
	(60)		59	TT: $\tau_{c-s}(95)$, GG: $\tau_{c-s}(90)$

^{*} See text. a) c, solution-bands. b) A_2 species in parentheses. The other notations are the same to Table 4.

The constants of p', p'', n', t', g', t'', g'', and l were assumed to be reasonable in value. It has been supposed that the potential constants are common for all species. The obtained set of the force constants is listed in Table 3. The calculated frequencies of methyl ethyl and diethyl sulfides are summarized in Tables 4—7, together with the observed frequencies.

Molecular Forms. We may suppose two forms, T (C_s) and G (C_1), on methyl ethyl sulfide and three forms, TT (C_{2v}), TG (C_1), and GG (C_2), on diethyl sulfide. Since the GG' form of diethyl sulfide may

have a higher energy than the other forms, we excluded this form from the conformational analysis of diethyl sulfide. The analysis of the molecular forms is made mainly on the bands observed in the CH₂ (or CD₂) rocking, C–S stretching, and skeletal deformation regions. Considering the numbers of the bands which remain in the crystalline films, we may conclude that methyl ethyl and diethyl sulfides exist in one form in the solid state. For methyl ethyl sulfide and the deuterated analogues, the frequencies calculated for the T form correspond well to their solid bands. For

diethyl sulfide, the frequencies calculated for the TT form agreed well with their solid bands. We may, therefore, conclude that the stable forms in the solid state for methyl ethyl and diethyl sulfides are the T and TT forms respectively. The results are in accord with the previous results.⁶⁻⁹⁾

In the liquid-state or gaseous-state spectra, we observed more bands than would be expected for one conformation. The bands which disappear in the solid state of methyl ethyl sulfide and its deuterated species correspond well with the frequencies calculated for the G form. For diethyl sulfide, the bands at 1425, 1272, 1066, 971, 782, 762, 696, 638, 384, 306, and at 260 cm⁻¹,which disappear in the solid state, agreed well with the frequencies calculated for the TG form. We still have several bands remaining unassigned in the liquid or gaseous spectra of diethyl sulfide: one band in the CH₃ rocking region, one to three bands in the C-C stretching region, two bands in the CH2 rocking region, and two to four bands in the skeletal deformation regions. It is unlikely that all of these bands are due to overtones or sum-combinations. Most of these bands correspond well with the frequencies calculated for the GG form. We, therefore, assigned most of these bands to the vibrations of the GG form.

Discussion

Perchard¹⁰⁾ made the vibrational analyses of eight isotopic species of methyl ethyl ether. He concluded that two forms, T and G, exist at room temperature, the former being more stable, and the T form in the solid state, and that the energy difference between the two forms in the liquid state is ca. 1.35 kcal/mol. For methyl ethyl sulfide, the intensities of the bands at 783 and 676 cm⁻¹ decrease upon cooling, as is shown in Fig. 1. The low-temperature spectrum was recorded at a temperature slightly above its melting point. These bands correspond well to the frequencies calculated for the G form. Thus, the G form is the less stable conformation in the liquid state. The conformations of sulfides correspond well with those of ethers. For methyl isopropyl sulfide, 11) we previously obtained the energy difference of ca. 1-1.5 kcal/mol. We suppose that the energy difference for methyl ethyl sulfide is ca. 1 kcal/mol.

Recently, Scott and El-Sabban¹²⁾ made the normal coordinate treatment for diethyl sulfide, and concluded

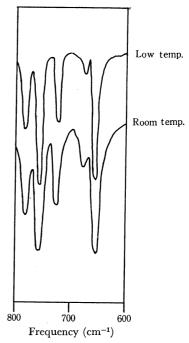


Fig. 1. Infrared spectra of methyl ethyl sulfide in the 800—600 cm⁻¹ region observed in the liquid state.

that the GG form has too much energy to exist as the stable form. Moreover, Snyder and Zerbi¹³⁾ and Wieser et al.14) have treated the vibrational spectra and normal coordinates for diethyl ether, and have denied that diethyl ether exists in the GG form with stability. Wieser et al. assumed that diethyl ether exists in the TT and TG conformations at room temperature; the TT form is more stable than the TG form by ca. 1.1 kcal/mol. They also suggested that the C-H···O intramolecular hydrogen bond stabilizes the TT form. On the other hand, Snyder¹⁵⁾ reported a few of the bands due to the GG conformation for n-pentane. He also suggested that the TG form is more stable than the GG form, although there is not so much energy difference between the TG and GG, and TT and TG conformations; the stability is in the order of TT>TG>GG. With reference to the cases of diethyl ether and n-pentane, one of the less stable forms of diethyl sulfide may be the TG conformations. As we discussed in the last section, we observed very weak bands which fit the frequencies calculated for the GG form well. Therefore, the existence of the GG form has also been confirmed. The result for n-pentane also supports this result. We may now conclude for diethyl sulfide that three conformations of the TT, TG, and GG coexist in the liquid and gaseous states, while only one, namely, the TT form, exists in the solid state.

Figure 2 shows the relations in the observed and calculated frequencies and the frequency shift upon deuteration for the three isotopic methyl ethyl sulfides. The calculated frequencies in general correspond well

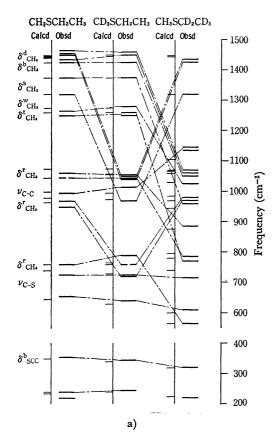
⁶⁾ D. W. Scott, H. L. Finke, J. P. McCullough, M. E. Gross, K. D. Williamson, G. Waddington, and H. M. Huffman, J. Amer. Chem. Soc., 73, 261 (1951).

⁷⁾ M. Hayashi, T. Shimanouchi, and S. Mizushima, *J. Chem. Phys.*, **26**, 608 (1957).

⁸⁾ D. W. Scott, H. L. Finke, W. N. Hubbard, J. P. McCullough, G. D. Oliver, M. E. Gross, C. Katz, K. D. Williamson, G. Waddington, and H. M. Huffman, *J. Amer. Chem. Soc.*, **74**, 4656 (1952).

⁹⁾ M. Hayashi, Nippon Kagaku Zasshi, 77, 1804 (1956).

¹⁰⁾ J. P. Perchard, Spectrochim. Acta, A 26, 707 (1970).


¹¹⁾ M. Ohsaku, Y. Shiro, and H. Murata, This Bulletin, **45**, 3480 (1972).

¹²⁾ D. W. Scott and M. Z. El-Sabban, J. Mol. Spectrosc., 30, 317 (1969).

¹³⁾ R. G. Snyder and G. Zerbi, Spectrochim. Acta, A 23, 391 (1967).

¹⁴⁾ H. Wieser, W. G. Laidlaw, P. L. Krueger, and H. Fuhrer, *ibid.*, **24A**, 1055 (1968).

¹⁵⁾ R. G. Snyder, J. Chem. Phys., 47, 1316 (1967).

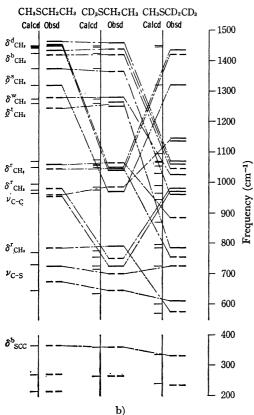


Fig. 2. Comparison of the observed and calculated frequencies (cm⁻¹) among the three isotopic species. Obsd; solid line: the bands appearing in the solid state, broken line: the bands disappearing in the solid state.

a) T form. b) G form.

Table 8. Observed and calculated frequencies (cm⁻¹) of the C–C stretching, C–S stretching, and the SCC bending bands in the T form

	CH ₃ SCH ₂ CH ₃		CD ₃ SC	H ₂ CH ₃	CH ₃ SC	D_2CD_3
	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd
$\nu_{\mathrm{C-C}}$	995	1001	1013	995	1141ª)	1104
$\nu_{\mathrm{C-S}}$	726	742	724	727	716	739
$v_{\mathrm{C-S}}$	654	644	640	631	610	599
$\delta_{ ext{scc}}$	354	348	345	342	321	318

a) Gaseous-state band.

with the observed ones. The frequency shifts upon deuteration can also be well explained by the calculations. In Table 8 the observed and calculated frequencies for the C-C stretching, C-S stretching, and SCC bending bands for the T form are listed. The observed C-C stretching bands are shifted to a higher frequency region through the CH₃SCH₂CH₃, CD₃SCH₂-CH₃, and CH₃SCD₂CD₃ species. The calculated frequencies also show this tendency. On the other hand, the C-S stretching and SCC bending bands are shifted to a lower-frequency region through the abovementioned species. The calculated frequencies fairly well support the observed tendency. For the G form, the observed frequency shifts upon deuteration are also explained by the normal coordinate treatment. The higher-frequency shift of the C-C stretching band can be understood if we consider that the band is pushed up to a higher frequency region by the CD₃ and CD₂ deformation vibrations.

 A_2 Modes of Diethyl Sulfide. For the TT form of diethyl sulfide, the two C-H stretching bands and one each of the CH₃ degenerate deformation, CH₂ twisting, CH₃ rocking, CH₂ rocking, C-C torsion, and the C-S torsional bands belong to the A_2 species. We previously made the assignments of the A_2 modes of dimethyl sulfide¹⁶⁾ by examining the annealed spectra. In the diethyl sulfide, we can expect the distortion of the molecular structure upon crystallization. If the site symmetry of C_{2v} for diethyl sulfides does not remain in the solid state, the former seven bands may appear in the region we recorded.

One of the doublet bands around 2940 cm⁻¹ can be assigned to the A2 mode. The analyses of the annealed bands at 1449, 1442, and 1436 cm⁻¹ are very difficult. We may, however, assign one of these bands to the A₂ species. The liquid bands at 1248 and 1028 cm⁻¹ persist in the solid state with intensities much weaker than in the liquid state. We can assign these bands to the A₂ twisting and rocking vibrational modes. The frequencies of the observed bands fit the calculated A₂ frequencies well. Among the A₂ modes, the CH₂ rocking, and C-C torsional bands were not observed in the annealed spectra. We now consider that the CH₂ rocking and C-C torsional bands are essentially too weak to appear in the spectrum. Thus, we were able to identify most of the bands belonging to the A₂ species of diethyl sulfide.

¹⁶⁾ M. Ohsaku, Y. Shiro, and H. Murata, This Bulletin, **45**, 113 (1972).

Table 9. Characteristic frequencies (cm $^{-1}$) of the CH $_3$ and CH $_2$ deformation regions in the [T] form

	CH ₃ - SCH ₃ ^a)	CH ₃ - SCH ₂ - CH ₃	CD ₃ - SCH ₂ - CH ₃	CH ₃ - SCD ₂ - CD ₃	$(CH_3$ - $CH_2)_2S$
CH ₃ deg def	1448	1465	1460	1437	1478
CII3 deg dei	1432	1457	1452	1427	1459
	1428	1448	1104	1147	1453
	1421	1436			1449
CH ₃ sym def	1331	1374	1377	1320	1381
CIII by III dei	1303	1319	10,,	1040	1373
CH ₃ rock	1039	1062	1056	978	1074
223 232	985	1045	1045	970	1066
	952	968			1047
	910	948			1028
CH ₂ bend		1427	1426		1438
-					1425
CH_2 wag		1264	1278		1282
					1258
CH2 twist		1249	$\binom{1266}{1248}$		1248
			•		1236
CH_2 rock		758	789		797
					762

a) Solid-state bands.

Snyder and Zerbi¹³) assigned the bands at 1148 (vw) and 811 cm⁻¹ (vw) of diethyl ether to the A₂ species. Also, the bands which may be due to the A₂ modes appear in the C-H stretching and CH₃ degenerate deformation regions in the solid-state spectra. On the other hand, for the species of dimethyl ether, Snyder and Zerbi¹³) observed bands which may be due to the A₂ species in the annealed spectra —at 2907 (w) or 2877 (m), 1445 (w), and 1152 cm⁻¹ (w)—, although they did not identify them as the A₂ modes. Therefore, it is likely that dimethyl and diethyl ether do not maintain the C_{2v} site symmetry in the solid state either.

CH₃ and CH₂ Deformation Regions. The CH₃ and CH₂ deformation bands of the sulfides in the [T] form are summarized in Table 9. The observed data of dimethyl sulfides are taken from Reference 16. The CH₃ degenerate deformation vibrations appear in the 1480—1420 cm⁻¹ region. There are two sorts of symmetrical deformation vibrations, namely, the vibrations of the methyl groups bonded to the sulfur atom (I) and those bonded to the carbon atom (II). The CH₃ symmetrical deformation bands of Case I appear around 1320 cm⁻¹, and the corresponding bands of Case II, around 1380 cm^{-1} . The CH_3 rocking vibrations in the ethyl group are strongly coupled together with the C-C stretching and/or the CH2 deformation vibrations. In a previous note on methyl ethyl sulfide,1) we assigned the five bands in the 990—940 cm⁻¹ region to the CH₃ rocking vibrations, but we noticed that the bands in the higher-frequency region were not assigned to the sole vibrational mode. It is more reasonable to consider now that the bands at 968 and 962 cm⁻¹ in the annealed state of methyl ethyl sulfide are the results of crystal-field splitting. The band at 960 cm⁻¹ in the liquid spectrum is assigned to the vibration of the G form. The CH_2 bending vibrations appear in the $1440-1420~\rm{cm^{-1}}$ region. The bands assignable to the CH₂ wagging and twisting vibrations appear very close

C-S Stretching Region. The C-S stretching bands are shifted to a lower frequency region from dimethyl to diethyl sulfides. This is easily recognized by considering the masses of the groups bonded to the sulfur atom. In a previous note on diethyl sulfide,²⁾ the band at 738 cm⁻¹ in the liquid state was identified as the C-S stretching fundamental. However, this band is too high to assign to the C-S stretching fundamental and too low to assign to the CH₂ rocking fundamental in view of the results on the normal coordinates. At the present time, we cannot reasonably explain this liquid band.